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Optical Rotatory Dispersion of Crystals of Sodium Chlorate and Sodium Bromate 
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The rotatory dispersion of crystals of NaCIO3 and NaBrO3 has been measured in the visible and 
ultraviolet region of the spectrum. Apart from a small infrared contribution, the rotatory dispersion 
of both crystals can be expressed as a difference of two terms. For NaC103 the positive term has a 
greater strength than the negative one, whereas for NaBrO3 the reverse is the case. Thus corresponding 
configurations of the two crystals have opposite signs of optical rotation. The important point is brought 
out that calculations of optical activity in terms of atomic refractivities but neglecting rotatory disper- 
sion, such as those carried out recently for these two crystals, are necessarily inconclusive. 
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Introduction 

Bijvoet and his collaborators (Bijvoet, 1960; Beurskens- 
Kerssen, Kroon, Endeman, van Laar & Bijvoet, 1963) 
made the interesting discovery that crystals of NaCIO3 
and NaBrO3 with similar configurations have opposite 
signs of optical rotation. There have been attempts to 
calculate the rotatory powers of these crystals by means 
of the polarizability theory of optical activity. The first 
calculation, carried out by Ramachandran (1951), gave 
the correct sign of rotation for NaC103, as was verified 
later by the X-ray determination of its absolute con- 
figuration (Ramachandran & Chandrasekaran, 1957). 
In this calculation, Ramachandran substituted the oxy- 
gen atoms of each chlorate group by a single aniso- 
tropically polarizable particle and neglected the rela- 
tively small contributions of the sodium and chlorine 
atoms. It was naturally supposed that NaBrO3 with a 
similar configuration would also have the same sign 
of rotation. That this was not so was proved by the 
X-ray work of Beurskens-Kerssen, Kroon, Endeman, 
van Laar & Bijvoet (1963), who then undertook a more 
detailed calculation treating each oxygen atom sep- 
arately and found that the sign of rotation was ex- 
tremely sensitive to the location of the oxygen. It 
appeared, therefore, that the reversal of sign in the 
case of the bromate could be accounted for satisfac- 
torily by a small shift in the oxygen parameters within 
the limits involved. 

However, it was emphasized by one of us (Chandra- 
sekhar, 1963) that caution is necessary in using the 
polarizability theory for working out absolute con- 
figuration. The fundamental objection to the theory is 
that the influence of all the ultraviolet absorption bands 
is lumped into the polarizability of the atom and it is 
assumed that the bands contribute with the same rela- 
tive strengths to the refraction and the rotation. But 
it is well known that strongly absorbing bands may be 
weakly optically active and vice versa, and that the 
rotational strengths of the bands may not all have the 

same signs. Bijvoet (1963) and Ramachandran (1963) 
have both expressed the view that this objection is not 
likely to affect the results of the optical calculations. 
The present investigation was taken up to test this im- 
portant point. 

Rotatory dispersion 

We have determined the rotatory dispersion of NaC103 
for 24 wavelengths from 0.2378-0.6234/z. The values 
agree to within 1% of those measured previously 
(Chandrasekhar, 1953a, 1961), but we place greater 
reliance on the new data because of improvements in 
the experimental arrangement. The set up was similar 
to that described recently by Kizel, Krasilov & Sham- 
raev (1964). The rotatory dispersion is expressible by 
the formula 

1.237422 0.135522 
O(+) - - 0.123, (1) [22--(0.09)2] 2 [22--(0"185)2] 2 

with a positive term at 0.09/z, a negative term at 0.185/t 
and a third term representing a very small negative 
infrared contribution (0 is throughout expressed in 
deg.mm -1 and 2 in / t ) .  The r.m.s, deviation between 
the calculated and experimental values is 0.03 deg.mm -1 
and the maximum deviation 0-65%. We shall suppose 
that the crystal has positive rotation and configuration A. 

We have made similar measurements of the rotatory 
dispersion of NaBrO3 for 19 wavelengths from 0.2752 
to 0.6234/t. For a crystal of similar configuration (con- 
figuration A), the rotatory dispersion can be repre- 
sented by 

0.609522 ~ 1.045922 
0(-) = - - 0.093, (2) 

[22-(0.09)2] 2 [22-(0.2)212 

with r.m.s, deviation 0.05 deg.mm -1 and maximum de- 
viation 0-51yo. The position of the negative term in 
this formula is only slightly different from that for 
NaC103, but its strength is now greater than that of the 
positive term. Thus the rotatory power of NaBrO3 is 
negative for configuration A. 
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The refractive dispersion of NaCIO3 in the range 
0-231-0.7188¢z has been shown to be expressible by the 
formula 

1-182522 0.0799222 
n 2 - 1  = 22_ (0.--09) ~ + 22_(0.185) 2 - 0.0086422 , (3) 

which has the same characteristic wavelengths in the 
ultraviolet as (I) (Chandrasekhar, 1961). The corre- 
sponding formula for NaBrO3, using the characteristic 
wavelengths of (2), is 

1-319422 0.23572 z 
n 2 - 1 =  21~(0-09~ + -22--Z-(0.2) ----~ -0.017422 , (4) 

to which agrees with the data extending from 0.2967 
0.7682/z due to Poinsot & Mathieu (1955); the r.m.s. 
deviation between the calculated and experimental 
values of n is 4x  10 -4 and the maximum deviation 
9x  lO -4. 

The relationships between [0] and 2 for the two crys- 
tals are shown in Fig. 1. Apart from the very small 
infrared contribution (1) and (2) are of the quadratic 
type, first proposed for a-quartz and cinnabar (Chan- 
drasekhar, 1952, 1953b, 1961). Subsequently there have 
been a number of investigations on the applicability 
of this formula to crystals. Kizel, Krasilov &: Sham- 
raev (1964) found that the formula holds good for p- 
quartz and ethylenediamine sulphate. Agranovich 
(1957) showed that the quantum theory of crystalline 
optical activity leads to the expression 

K1)22 + z  K?,(22+ 
i (22_j]2)2 __" (22_~2) 2 , (5) 

which, in fact, reduces to the quadratic formula when 
2>>2i. Formula (5) fits the rotatory dispersion of some 
crystals of salts of dithionic acid (Beljaev & Perekalina, 
1966). Nevertheless it would be fair to say that the 
precise nature of the rotatory dispersion term has been 
established unequivocally in only two crystals, viz. 
benzil (Kizel, Krasilov & Shamraev, 1964) and sodium 
uranyl acetate (Kizel, Krasilov & Shamraev, 1965), for 
which measurements through an absorption band have 
proved the validity of the Drude term near the band. 
It should be noted, however, that there is an important 
difference between benzil and sodium uranyl acetate 
on the one hand and crystals such as quartz, cinnabar, 
sodium chlorate and sodium bromate on the other. 
X-ray analysis has shown that the molecules of benzil 
(Brown & Sadanaga, 1965) and sodium uranyl acetate 
(Zachariasen & Plettinger, 1959) possess neither a 
centre nor a plane of symmetry in the crystal structure. 
Thus, although these substances are optically inactive 
in solution, their activity in the crystalline state will 
be partly of molecular origin and some rotatory dis- 
persion terms may indeed be expected to be of the 
Drude type. 

When this investigation was in progress, Kizel, Kra- 
silov & Shamraev (1964) carried out measurements on 
NaBrO3 and published a Drude type of formula, 
which, for configuration A, may be written as 

1.449 1.887 
Q(-)= 22_(0.1) 2 - 22_(0.224) 2 . (6) 

The formula agrees with our experimental values to 
within about 2%. It has been shown that the rotatory 
dispersion of NaC103 may also be expressed approx- 
imately by a similar Drude type formula (Chandra- 
sekhar, 1953a, 1961). On the basis of the new experi- 
mental data we have modified it to 

1.2528 0-1546 
Q(4)= 2 -2.. (b.1 i ~ - 2 2 -  (0.21)2' (7) 

again for configuration A. The formula fits all the ob- 
served values to within 2"270 except that for 0.62344/z 
for which the discrepancy is 2"970. Though (1) and (2) 
give a much better fit with experiment than (7) and 
(6) respectively, it is not possible at this stage to assert 
which type of formula is valid for NaC103 and NaBrO3 
(see Chandrasekhar, 1961). 

Conclusion 

Whether we consider the Drude or the quadratic equa- 
tion, the formulae for NaC103 and NaBrO3 can be seen 
to be quite similar. The essential difference between 
the two is that in the former the contribution of the 
positive term is greater than the negative one, whereas 
in the latter the reverse is the case. Thus corresponding 
configurations of the two crystals have opposite rota- 
tory powers. On the other hand, the terms are all posi- 
tive in refractive dispersion. Consequently a theory 
which seeks to calculate optical activity in terms of 
atomic refractivities, but without taking into account 
rotatory dispersion, is necessarily incomplete and liable 
to give ambiguous results. 
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Fig. 1. Rotatory dispersion of NaC103 and NaBrO3. 
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A complete list of the individual symmetry groups belonging to all sets of such groups up to three 
dimensions is given, each set being characterized by symbols as agreed upon by the Commission on 
International Tables and each symmetry group by a symbol closely connected with the international 
space group symbols. Each set is characterized by the reducibility of the matrices of the transformations 
of space corresponding to the symmetry operations. 

As pointed out elsewhere (Bohm & Dornberger-Schiff, 
1966) the different kinds of symmetry group - not only 
the purely geometrical groups but also those including 
antisymmetry and other generalized symmetry - may 
be described and symbolized as geometrical symmetry 
groups. It is of advantage to have easily understand- 
able symbols for the different sets of symmetry groups 
- differing e.g. in their dimensions of extension or 
periodicity - and also for the individual symmetry 
groups of these sets. 

In the following a complete list of the symmetry 
groups of all sets up to three dimensions is given. In 
Tables 1 and 2 symbols for these sets are used (symbols 
f~) as agreed upon by the Commission on International 
Tables and originally proposed by Niggli (1966). For 
comparison, symbols for the sets proposed some time 
ago by one of the present authors (Bohm, 1963) are 
given (symbols G). 

Because we included the possibility that one or more 
dimensions have a non-geometrical meaning, subsets 

of symmetry groups are of importance in which some 
of the directions (although all with or all without 
periodicity) are not exchanged by the transformations 
of the groups. This is indicated in the symbol of the 
subset by enumerating separately the dimensions which 
do not exchange (see below). 

The matrices representing the symmetry groups of 
such a set are at least reducible in a characteristic way 
indicated in the line below the G-symbols. Matrices with 
4 or 3 rows respectively are used in which the last 
column gives the translational components. 

All symbols for the symmetry groups are deduced 
from the (full) international space group symbols in 
the following way" The symbols for the symmetry 
elements retain their well-known meaning. Symmetry 
elements referred to directions of missing periodicity 
are enclosed in round brackets. If two or more such 
directions of missing periodicity exist, and if exchange 
of these directions is possible within the particular set, 
the corresponding symmetry symbols are enclosed in 


